Teaching, Learning, Doing and Conversing: How They Fit Together

Charles Rich
Worcester Polytechnic Institute

Computer Science Department
Interactive Media and Game Development Program
Architecture

- symmetry
- balance
- modularity
- economy
- ...

WPI
Lifelong Learning Companion

- Learning
 - Teaching
 - Conversing
 - Doing
Example Systems

- **PACO** “Pedagogical Agent for Collagen”
 - Jeff Rickel, Neal Lesh, Charles Rich, Candace L. Sidner, Abigail Gertner
 - successor to STEVE
 - unified intelligent tutoring & collaborative dialogue

- **COLLAGEN** “Collaborative Agent”
 - Charles Rich, Candace L. Sidner, Neal Lesh
 - unified intentional, attentional and linguistic aspects of dialogue
STEVE → PACO

- STEVE
 - *hierarchical task network* used to keep track of both student and teacher goals/actions
 - but tutorial *dialogue* implementation was ad hoc

- PACO
 - re-implemented STEVE using COLLAGEN
 - task network also drives the dialogue (by adding pedagogical goals/actions)
COLLAGEN

- Key architectural features:
 - utterances treated as actions
 - symmetric treatment of user and system actions/utterances
 - discourse generation treated as inverse of interpretation
 - plug-ins for response generation
Collaborative Discourse Theory

Intentional

purposes, contributes

focus spaces, focus stack

Attentional

segments, lexical items

Linguistic

[Grosz, Sidner, Kraus, Lochbaum 1974-1998]
Contributes (Subgoals)

- An action/utterance **directly contributes** to the purpose of a segment if it:
 - *achieves* the purpose
 - is a *step* in the plan for the purpose
 - identifies the *recipe* to be used to achieve the purpose
 - identifies *who* should achieve the purpose
 - identifies a *parameter* of the purpose

"knowledge preconditions" [Lochbaum, 1988]
COLLAGEN Architecture

Task Model

Interpret

Discourse State

Respond

Choose

Generate

agenda

user event

system event
Discourse Interpretation

Plan Tree:

```
live A
live B
live C
live d [user]
live e [user]  → live f [agent]
live g [user]
```

Focus Stack:

```
g [user]
B
A
```

1. User performs e.
2. User performs d.
3. Agent performs f.
4. Agent says “Please perform g.”
COLLAGEN Architecture

- Task Model
 - Interpre
 - Discourse State
 - Respond
 - Choose
 - Generate
 - agenda

user event

system event
“Plug-in Architecture”

- each plug-in is applied to each node of plan tree
- plan tree nodes visited in focus stack order
- each plug-in application returns zero or more agenda items containing:
 - a (partially specified) system action/utterance which *would* contribute to purpose of given plan node
 - a priority (for choosing best agenda)
Discourse Generation

Plan Tree:

- live A
- live B
- live C

Focus Stack:

- B
- A

Agenda Items: <priority>

- f [agent] <100>
 - Propose.Should [agent, g[user]] <50>
 - Propose.Should [agent, A] <50>
 - Propose.Should [agent, C] <50>

Plug-in: ProposeShould
Discourse Generation Plug-ins

- Design Methodology:
 - each plug-in embodies a single response principle
 - all agenda items should be “reasonable” responses
 - priorities determine agent’s style and personality
Example Response Principles

- *Execute* live primitive actions which are constrained to be performed by system. <priority 100>

- *Ask* the user to execute live primitive actions which are constrained to be performed by user. <priority 50>

- *Explain* how to achieve goals which user has never achieved by herself. <priority 150>
PACO Plug-ins

Default Plug-ins: Execute, ProposeShouldUser, ProposeShouldJoint, AskWho, AskWhat, AskHow

Error Correction Plug-ins: PositiveFeedback, StopInterruption, Predecessors, Precondition, NearMiss, Repeated, PrivateFocus, UnexpectedLive

Teaching Plug-ins: TeachStep, TeachApplicable, TeachInitiative, TeachSuccessful, TeachConfirm, NextExercise
PACO Tutorial Dialogue Example

Let's start the generator. First, press the On button on the generator to start the generator. (Please use the mouse to click the button where I am pointing.)
1. Tutor says "Our first exercise is very simple."
2. Tutor sets the state of the simulator.
3. Tutor says "Let's start the generator."
4. Tutor says "The first step is to press the generator on button.
5. Tutor says "Please press the generator on button.
6. Student presses the generator on button.
7. Tutor says "Great."
8. Tutor says "We confirm successfully starting the generator by noticing a positive reading on the volt meter."
9. Tutor says "Now, do you want to try a more complex task that includes starting the generator?"
10. Student says "Yes."
11. Tutor sets the state of the simulator.
12. Tutor says "Let's engage engine one."
13. Tutor says "The first step is to start the generator."
14. Tutor says "Let's start the generator."
15. Tutor says "You take it from here."
16. Student presses the disengage button.
17. Tutor says "Please stop disengaging the engine."
18. Student says "What next?"
19. Tutor says "Please press the generator on button."
20. Student presses the generator on button.
21. Tutor says "Great."
22. Tutor says "These engines need a supply of compressed air in order to be started."
23. Tutor says "The next step is to open the bleed valve to tap into the air produced by the generator."
24. Tutor says "Please open the bleed valve."
25. Student presses the engage button.
26. Tutor says "Whoops, it's too soon to do that."
27. Student opens fuel valve one.
28. Tutor says "That was a correct action, but I wasn't expecting you to do it now."
29. Tutor says "Let's go back to opening the bleed valve."
30. Student opens the bleed valve.
31. Tutor says "Right."
32. Tutor says "Now, notice that the fuel contamination light is on."
33. Tutor says "The next step is to press the purge button to clear fuel line contamination."
34. Tutor says "Please press the purge button."
35. Student presses the purge button.
36. Tutor says "Great."
37. Tutor says "We confirm successfully clearing fuel line contamination by noticing that the fuel contamination light is off."
38. Tutor says "The next step is to press the engage button again."
39. Tutor says "Please press the engage button."
40. Student presses the engage button.
41. Tutor says "Great."
42. Tutor says "We succeeded in engaging engine one."
What About Learning?

- Learning *procedural* knowledge (i.e., adding to task model)
 - same collaborative discourse framework used for *user* to teach/instruct *system*
 - cf. Andy Garland, AAAI-FSS’00, KCAP’01
 - modest generalization capabilities go a long way (especially if system can ask questions)
 - cf. Bootstrap Learning project (DARPA)
Summary / Morals

- **Reuse**
 - discourse state used both for interpretation and generation

- **Symmetry**
 - actions and utterances
 - system and user

- **Modularity**
 - response generation plug-ins

Questions?

Discussion?